
Whitepaper: “Performance testing Rich Internet Applications (RIAs) and other complex clients”

Whitepaper
Performance testing in non-representative
environments - 10 key factors for consideration

www.ten10.com+44 (0) 203 697 1444

www.ten10.com+44 (0) 203 697 1444

Whitepaper: Performance testing in non-representative environments - 10 key factors for consideration

What is a non-
representative
environment?
It is highly unusual for
performance testing to be
carried out in a perfectly
live-like environment.There’s
normally at least a couple
of differences between
the performance test
environment and the live
environment such as data
sizing, backup and storage
infrastructure, interfaces
to other (live) systems, or
cross-site data logging and
data replication.

More realistically, there
may be compromises
due to the costs of
creating and maintaining
a full-size non-production
environment which mean
that CPU and disk-write
speeds may be specified
at a lower capability in
the performance test
environment than for
the production system,
even if the number of
physical devices are
equivalent between the two
environments.

Any one of the examples
mentioned above could
arguably be said to be a
reason why a performance
test environment is non-
representative. This does
not mean that you should
not execute performance
testing, however you should
acknowledge that the
performance testing will
therefore not necessarily
represent the outcome

of testing in a live-like
environment.

Working with limitations,
such as time, is an
accepted part of a risk-
based approach to testing;
in performance testing
this can often manifest
as focussing on the core
transactions around the use
of the system rather than all
possible transactions. While
test environment limitations
with server resources, test
data and architecture are
not ideal in performance
testing, the risks these
limitations present need
managing as with any
testing risk, when using a
risk-based approach.

This whitepaper takes a
closer look at some of the
key factors that should
be considered when
performance testing in a
non-representative test
environment.

Designing your
performance test
environments
and performance
tests
Testing against non-
representative environments
is largely an art rather
than a science. Although
extrapolations and trends
may indicate different
degrees of performance of
a system, the number of
factors to consider when
the environment is not a
true representation of live
makes it very difficult to
apply a generic formula or
rule of thumb.

An environment that is
nominally 50% in scale
of the live environment
does not usually equate to
50% of the performance
of the live environment,
for example a marginal
decrease in memory on
a single server could
theoretically grind an entire
system to a halt if that
server is already utilising
close to all the memory.

“An environment that is
nominally 50% in scale
of the live environment
doesn’t then equate to

50% of the performance”

www.ten10.com+44 (0) 203 697 1444

Whitepaper: Performance testing in non-representative environments - 10 key factors for consideration Whitepaper: Performance testing in non-representative environments - 10 key factors for consideration

In the same way, adding
lots of new servers and
resources to a system will
not necessarily improve
overall system performance
if the existing servers are
not being highly utilised.

In some situations using
a non-representative
environment for your
performance testing may
be unavoidable. This paper
explores a number of
common considerations
that should be taken into
account when designing
and executing your
performance tests in this
situation.

1. Using non-
representative
environments
to left-shift
performance
testing
Firstly, it is important
to understand that
sometimes testing in a non-
representative environment
is actually the most
appropriate thing to do.

Depending on the design of
the system architectures, it
is sensible to strategically
test with a non-
representative environment,
particularly in systems
comprised of services and/
or APIs, which are typically
more suited to left-shifting
the performance testing
(performing the testing
as early in the software
development life cycle
as possible) to achieve
test coverage earlier. This
is best achieved within
Agile projects and in some
cases where suitable, in
monolithic applications
following a more traditional
approach.

Although it is technically
possible to deploy a single
service on an environment
representative of live,
without the other parts
of the system deployed
there is little value in doing
this for the purpose of
performance testing as you
will not be measuring the
overall system performance.
In reality, when left-shifting
performance testing
a better approach is
often to deploy and
run the performance
test on your local
machine, or on a
scaled down test
environment.

At this stage you
are trying to identify
issues around the
code rather than the
overall infrastructure
and system capacity,
so using a non-

representative environment
or local PC is the correct
approach.

2. Network
infrastructure
An important aspect of
system performance,
which can sometimes be
overlooked, is the network
architecture. While the
architecture is often not
designed with performance
in mind, it should be
noted that differences in
architecture between live
and test can result in small
differences in performance.

An example of when
network infrastructure
impacts on system
performance is the use
of external and internal
firewalls. Firewalls can
contribute to general
performance degradation
and often the presence
of firewalls or the rules
employed are significantly
reduced in test
environments, especially in

Left-shift performance testing

Network infrastructure

www.ten10.com+44 (0) 203 697 1444

Whitepaper: Performance testing in non-representative environments - 10 key factors for consideration

a system of systems that
rely on traffic from multiple
internal and external
sources.

Another example is
stubbing, where a part of
your system (typically an
external part) is simulated
during a test. If you are
stubbing some external
traffic this can lead to a
reduction in latency over
the network as it is unlikely
you are exposing the stubs
behind firewalls that would
be employed in live. This
is in addition to a reduced
number of network hops to
reach the stub’s location.
Furthermore if the stub is
closer to the system under
test (SUT), then propagation
delays (the time it takes a
message to travel between
sender and receiver) are
likely to be much lower, so
consideration should be
given to simulate them
within the stub itself
when possible.

Another key
consideration is how
users are accessing
your systems and
services. If you have a
large user base using
mobile devices where
the connection and
degree of packet loss/
dropouts is higher,
then this needs to be
factored into your load
model to ensure this
experience is taken into
consideration.

The use of content
delivery networks

(CDNs) should also be
taken into account, and is
discussed in detail below.

3. Logical system
architecture
Similar to network
architecture, the way you
logically architect and
deploy your applications
can have an impact on the
observed performance of a
system.

For example, queuing of
requests into a service and
data source is a common
pattern used to manage
traffic. To properly test this
it is important to configure
the queues, services and
databases in the same
way such that the queue
is subjected to the same
performance variables. A
queue configured differently

in test for any reason can
lead to bottlenecks being
exposed in different parts of
the system in test and live.
A smaller configured queue
size in live would result in a
larger queue and reduced
processing, that would
otherwise not be seen in
test.

Another example is how
traffic is segregated. If
your live environment is
using clustered databases
it may be setup to run
updates against one
database and any queries
or reporting are run against
another database. If you
are only running against
a single database in a
test environment the lack
of traffic segregation
will impact the overall
performance, as well as the
lack of memory and CPU
segregation.

Logical system architecture

www.ten10.com+44 (0) 203 697 1444

Whitepaper: Performance testing in non-representative environments - 10 key factors for consideration Whitepaper: Performance testing in non-representative environments - 10 key factors for consideration

4. Operating
systems,
software and
runtime
There are limits to how
non-representative a test
environment can be and
still deliver meaningful
performance test results.
If the test environment
does not have the same
operating systems,
supporting software (e.g.
web server, database
server, system libraries),
or the same runtime/
scripting engines (e.g.
JDK/JRE version) then
the behaviour of the SUT
may differ greatly from the
behaviour of the production
service. Even with
the same versions,
the configuration
(e.g. Java Runtime
Garbage Collection
options, heap size)
of these can have a
noticeable impact on
performance.

While it is possible
that using a
fundamentally
different operating
system may
invalidate your

performance tests, perhaps
less obvious is the fact
that, using different
patch versions could also
have an impact in some
cases. It is possible for
different minor versions
of operating systems
and software to exhibit
different performance
characteristics.

The operating systems,
software and runtime you
use, and more specifically
the minor versions of these,
should be considered
for all types of testing,
including operational
acceptance testing (OAT)
and functional testing, not
just performance testing.

5. Scaling
Scaling is a key decision
when designing both your
live and test environments
and your performance test.

The key benefit of scaling is
the ability to add resources
to your system as a
greater amount of existing

resources are utilised.
Two scaling options are
available; horizontal, where
further servers are added
to complement the existing
servers, and vertical, where
additional resources are
added to an existing server
or servers.

Scaling using the cloud is
an increasingly common
deployment pattern used to
negate performance risks
in a live system. Indeed,
testing the scalability of a
system is a common feature
of a performance test
approach.

For the purposes of testing
in non-representative
environments, it is
important to apply the
same type (horizontal or
vertical) and configuration
of scaling across the whole
system to ensure the results
are representative as the
behaviour of system can
vary greatly depending on
how it is scaled.

If you are only using
one node in your test

Operating systems across devices

Scaling graph

www.ten10.com+44 (0) 203 697 1444

Whitepaper: Performance testing in non-representative environments - 10 key factors for consideration

environments but you are
using multiple nodes in
live due to scaling, it is
important to consider how
things like load balancing
and server affinity may
result in additional risk; if
you are only using one node
in test, specific functionality
like server affinity may not
even be tested.

It should be noted though
that scaling alone will not
deliver reliable performance
testing results. For example,
poor coding practices and
techniques can result in
issues in live regardless
of any scaling employed.
These could be identified
through early component-
level performance
testing in an environment
not designed to be
representative, as described
in section 1.

6. Database
configuration and
data sizing
As described above in
section 2 - where we looked
at database clustering -, the
configuration of databases
can impact the results
of performance tests. A
number of factors come
into play with database
configuration, behaviour
and sizing. Some of the
factors include:

Query structure and
optimisation

Basic good practice in the
structure and formation of
your SQL can go a long

way. There is no sensible
reason for the structure of
your SQL to be different
in different environments,
but needless to say it is
important. As is carrying
out query optimisation.
Again, optimisation of
queries should not result
in any differences between
environments, but is an
important consideration
in the performance of a
database and system as a
whole.

Database instances

It is common for multiple
database instances to
exist on a single server,
and in test environments
it is just as common to
have multiple instances
on the same server for
entirely different systems
or different versions of the
same system where testing
is taking place on different
builds. While typically in
performance testing this
would be avoided, it is
important to ensure that
instances for other systems
or versions are not running
on the same database
server being used for
performance testing.

Even with the same memory
and IO configuration it is
likely the performance of
the actual server will be
degraded when running
multiple instances.

Indexing

Indexes improve lookup
times in tables by
removing the need for a

linear search of a table.
an index is vital for large,
often-searched, tables.
Whenever new or updated
data is applied to a table
the index slowly becomes
fragmented. Indexes
need to be rebuilt and
can be scheduled through
configuration applied to
the database. It is common
for this configuration
to be different in live
and test environments
to reduce maintenance
and support time on test
environments, but this can
have a significant impact
on the performance of test
systems.

Clusters

Using database clusters
can significantly improve
the performance of
your databases and the
system as a whole. This is
mainly around operational
considerations around
failover of services. Not
using clustering in this way
doesn’t always have any
impact on the results of a
performance test unless you
need to simulate failover
as part of the performance
test.

For example, if you need
to look at the performance

Database configuration and data sizing

www.ten10.com+44 (0) 203 697 1444

Whitepaper: Performance testing in non-representative environments - 10 key factors for consideration Whitepaper: Performance testing in non-representative environments - 10 key factors for consideration

of the actual failover
process and the system
performance post failover.

Row / table locking

Locking of rows, tables,
connections and entire
databases is an important
functional aspect of
databases that protect
shared resources, for
example multiple queries
updating a single piece
of data. However locks
can result in unwanted
contention, slowing down
the processing of data.
While the process of
locking data in a database
will not differ between
environments, the way in
which the test runs may
impact the degree of
locking that takes place
between a test and live
environment. This relates
closely to data sizing
described below.

There are many more
factors for which should
also be taken into account
such as connection pool
configuration
and memory
configuration
among others.

Many of
the above
considerations
can be attributed
to differences
in manual
configuration
of servers and
databases.
If you are
using DevOps
practices

(including using the Cloud)
and tools like Docker, there
is less need to consider
manual configuration of
databases (and services)
as the assumption is
that you would apply the
same configuration across
environments.

Further to database
configuration, data sizing
is another important
consideration. That is, the
volume of data available
in a database. A good
example of how the
volume of data can cause
differing results is data
locking. For example, if
the amount of customer
data in a database is
significantly reduced in a
test environment it is far
more likely to result in locks
in the database as it is more
likely different users will be
trying to access the same
data in the database at the
same time.

Another key consideration
in data sizing is ensuring

your actual data is
representative. For
example, a customer table
may have the same number
of records, but if the
makeup of these surnames
is different in your test
environment it can lead to
false positives. A typical
example is fuzzy matching
surnames - such as Smith
and Smythe.

7. Caching
Caching refers to the
storage of previously
retrieved content for future
use, typically larger more
static content like images.
Caching takes place for
anything being sent by web,
application and database
servers. This caching may
take place in two different
ways, most simply defined
as client caching and server
caching.

Client caching is where
content is stored on the
user’s machine such as

Caching

www.ten10.com+44 (0) 203 697 1444

Whitepaper: Performance testing in non-representative environments - 10 key factors for consideration

the caching which takes
place in a browser. Server
caching is where common
content is made more
readily available by the
system, such as storing
content in the memory of
the server to make retrieval
faster than it otherwise be
when retrieving from disk,
or by storing the content on
a proxy located somewhere
nearer to the client
(reducing network factors).

All of these factors need to
be taken into account not
only when designing your
performance test but also
when looking at how your
live and test environments
are configured. For
example, if your user base
includes users throughout
the world, does your test
make use of cloud-based
load injectors and does
your test environment
employ the same type of
server caching?

When using a protocol-
level performance test, it is
also important to configure
caching simulation to
accurately represent what
the users will see. This
simulates what takes place
for client-side caching, for
example in a web browser.
Most of the common tools
used for performance
testing include some sort
of caching management
that performs the function
of caching simulation. It
is important to configure
these accurately, including
ensuring the HTTP headers
are properly parameterised

so the test continues to
work in the future.

For systems with very high
utilisation a CDN may be in
place. CDNs also include
elements of server-side
caching, and is discussed
further below.

8. Content
delivery networks
(CDNs)
Performance testing
a system that makes
use of Content Delivery
Networks (CDN) can
add complications and
some unknowns if the
implementation of a CDN
is new, especially when
looking to benchmark
the performance of a
system. If the CDN in
the test environment
is not representative
of live this can further
the complications and
unknowns.

The following questions
should also be asked in
order to better-understand
how the CDNs may affect
performance test results:

- Is the CDN available in
the test environment?

If the CDN is not
available at all in the test
environment, the results can
be significantly different to
what may be experienced in
Live with the CDN in place.
If you are making use of
a CDN in Live it is vital a
CDN is used in test to get
meaningful results related

to caching and content
delivery.

- How do CDNs handle
traffic coming from one set
of IP addresses (the load
injectors)?

- Do they see these
connections as they would
individual connections from
users, or are they treated as
a DoS attack?

- Is the CDN configured
the same? Is it available
in the same locations and
at the same scale for a
performance test?

- Related to caching
above, what caching is
being employed and is it
configured the same in test
and live?

It should be noted that
sometimes CDNs do
not allow any form of
performance testing against
their systems (through test
or live environments) and
you may have to accept the
contractual SLA of the CDN
provider will be met.

www.ten10.com+44 (0) 203 697 1444

Whitepaper: Performance testing in non-representative environments - 10 key factors for consideration Whitepaper: Performance testing in non-representative environments - 10 key factors for consideration

be setup to work in
different ways, either by
simulating normal usage or
by simulating exceptional
conditions like peak load.
It is important to consider
what you want to achieve
when using virtualised
services, over and above
ensuring you are not
overloading external
systems.

10. Data entry
points and end
points
Pushing data into a
system at the protocol
layer, rather than the
graphical user interface,
is a common approach
in performance testing.
This is designed to look
at the performance
of the server rather

than the client. This
approach will result in a
difference in the end to end
performance of a system in
live compared to the results
measured in a test, as the
processing taking place on
the client machine is not
taken into account.

Another consideration is
to ensure the data entry
point being used in the
test is actually correct,
and that a different end
point isn’t being used
for some reason. While
this may seem obvious,
it is not uncommon to
see performance tests
use an endpoint that
doesn’t represent live
usage, bypassing part of
the system. An example
is bypassing a secure
service that sits in front
of an internal firewall, that
then forwards on traffic to
another internal service not
using encryption. While
this may simplify the test
by removing encryption,
the true performance of
the system will not be
measured (notwithstanding
the fact the client
performance isn’t being
considered).

9. Downstream
and upstream
systems/service
virtualisation
Service virtualisation (also
known as stubbing or
mocking) is normally used
to prevent overloading
of external service
outside your control or
where specific scenarios
can’t be accomplished
on an external service.
Performance testing
external systems/ services
indirectly through a test
of your system may either
result in the service being
blocked or being throttled
in some way, or require you
to schedule the use of these
systems/services, which
may cause contention with
other activities.

Virtualised services can Data entry points and end points

Downstream and upstream systems/service virtualisation

Whitepaper: Performance testing in non-representative environments - 10 key factors for consideration

To learn more about our flexible software
testing solutions please call 0203 697 1444

or email contact@ten10.com.

Conclusion

Performance testing can
always add value, but as
described above, there
are many considerations
that need to be taken into
account when using an
environment that differs to
Live.

There are certainly benefits
to using non-representative
environments for
performance testing
purposes, including;
where an Agile approach
is employed to identify
potential performance
issues early and against
specific services,
to perform basic
benchmarking, analysing
controlled increases in

concurrency, identifying
threading issues in the
code and identifying locking
issues in the database, to
name just a few..

For performance testing
it is important to properly
assess and consider all
the factors that will come
into play including how the
environments are designed
and how you design your
test. You cannot just
assume that using 50%
of the load against an
environment with 50% of
the capacity will provide
you with accurate results.

Whilst you can identify
and understand risks by

applying some degree of
extrapolation or formulae to
determine the performance
of a live system from
a non-representative
test environment, it is
important to spend time
understanding what the
differences are and assess:

- What the impact on the
performance test results is
likely to be?

- What observations and
risks identified in test are
likely to be replicated in
live?

- Which differences
between environments are
likely to expose the most
risk?

Ten10 is the UK’s leading independent software testing
company. With a rigorous and creative approach to software

testing - delivered through a combination of best-in-class
technology and talented, passionate experts – we give our
clients the confidence to embrace innovation and business

transformation, redefining the limits of possibility.

From strategic test consultancy and managed services through
to staff augmentation, Ten10 is adept at delivering flexible

and scalable software testing solutions for complex technical
challenges. Key areas of expertise include; test strategy,
functional testing, performance testing, test automation,

mobile testing and accessibility testing.

